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1.0 Introduction  

 

The goal of the documentation presented is to provide instructions on how to quickly and easily setup and 

calibrate touch controller drivers for most embedded or desktop Linux configurations.  After this setup and 

calibration, applications running on target machine will be aware of the position and touch state of the 

touch screen connected to the touch controller.  We have provided source code and discuss some common 

open source touch libraries to enable the driver to function on any platform the driver source code or library 

source code is compiled for.  This manual was written for AR1010, AR1011 and AR1100 chips and will be 

referred to collectively as AR1XXX throughout the manual. 

 

An installation script (“install.sh”), a controller test utility (“inputverify”) and a controller activation utility 

(“inputactivate”) are provided tools that were created to help simplify the task of setting up a touch 

controller driver for the target computer.  These tools and the libraries discussed in this documentation are 

only recommendations and there are a variety of many good open source solutions available.  However, for 

non-USB interfaces,  at a minimum the Microchip kernel module will need to be compiled from source 

code (unless a kernel module is already available from the mainstream Linux kernel tree such as the 

“hampshire” kernel module) and activated (by way of read bytes from the controller’s associated device 

path to the loaded Microchip kernel module). 

 

After all of the documentation steps have been completed for the intended target platform, a kernel device 

path will appear under “/dev/input” that will send touch state information (in evdev format) to any 

application or touch library that reads this location.  Normally, a library will be setup to read from this 

location and the application will process the touch state information in the form of mouse events interpreted 

from the GUI framework the application is using. 

 

Preliminary Steps 

 

In order for the included installation script and utilities to function, the provided source code will need to be 

compiled.  To setup the environment for compiling source code for the target system, please see your Linux 

distributions documentation on how to best accomplish this.  As a convenience, an “ubuntu10-10.sh” script 

is provided to setup all the necessary build dependencies such that the documentation steps may be directly 

followed on the Ubuntu 10.10 Linux platform.  This script may be run from command prompt from within 

the installation directory as a first step using the command “sh ./ubuntu10-10.sh”.  Scripts for other Linux 

distributions will be added in future driver updates. 

 

Extract installation files to a directory path that does not contain any spaces (to avoid confusing gcc or 

build tools) using a command such as "tar zxvf AR1XXX-LINUX-UART-V102.tar.gz" (or by using 

nautilus or other file manager plug-in) followed by running the "make” command then the “sh ./install-

module.sh" command at the root of the extracted files. 

 

 

Root access 

 

Many if not most of the described operations described in the documentation will require root access.  On 

most Linux platforms a root command prompt may be obtained by running the command “su” followed by 

entering the root password.  On Ubuntu platforms, instead of the “su” command, use the “sudo su” 

followed by entering a root password instead.   For the purposes of more easily following the 

documentation, please run the commands described in this document with root access. 
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2.0 Automatic Installation of the driver 

 

If all of the preliminary steps and libraries have been setup, there is an “install.sh” file provided with the 

driver bundle that will automatically install the driver on most systems.  Run this installation script with 

root access from the installation directory using the command “sh ./install.sh”.  If there is an error at any 

point in the installation script, please see the documentation section relevant to the installation failure under 

“Manual Installation of the driver”.  

 

 

Command: 

sh ./install.sh 

 

Example output: 

 

Note: If errors are found at any point in the script, please see online 

documentation at www.microchip.com on how to setup target Linux target 

build dependencies to resolve these errors. 

 

Building kernel source 

 

make -C /lib/modules/2.6.35-24-generic-pae/build 

SUBDIRS=/home/steve/Desktop/AR1XXX-LINUX-UART-V102 modules  

make[1]: Entering directory `/usr/src/linux-headers-2.6.35-24-generic-

pae' 

 

. 

.  

. 

Installation complete. 

 

To calibrate controller, please see Microchip online documentation for 

details regarding this. 

 

Please see the section below for information on how to automatically activate driver on reboot. 

 

3.0 Manual Installation of the driver 

3.1 Setting up UART controller on system 

 

Getting touch communication to work over a UART interface involves two main parts.  The first part is 

creating (compiling) a kernel touchscreen module that will take a set of bytes read from the UART 

interface and decoding these bytes into coordinates based on the touch protocol.  The second part is 

creating an application that will register an open handle of a serial port with the kernel so that that UART 

driver may see the UART data stream such that it may be decoded and translated into coordinates. 
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3.1.1 Compiling driver for current kernel version 

 

Before we can create the necessary kernel touch module, we will need to setup our development system 

and/or Linux target so that we may be able to successfully compile the provided Microchip kernel 

touchscreen module code.  The way this is done is different depending on the Linux distribution used.   

 

If the compile and installation is successful, you should see output similar to the following: 

  

Command: 

make 

 

Example output: 

make -C /lib/modules/2.6.35-24-generic-pae/build 

SUBDIRS=/home/steve/Desktop/AR1XXX-LINUX-UART-V102 modules  

make[1]: Entering directory `/usr/src/linux-headers-2.6.35-24-generic-

pae' 

  CC [M]  /home/steve/Desktop/AR1XXX-LINUX-UART-V102/mchpar1xxx.o 

  Building modules, stage 2. 

  MODPOST 1 modules 

  CC      /home/steve/Desktop/AR1XXX-LINUX-UART-V102/mchpar1xxx.mod.o 

  LD [M]  /home/steve/Desktop/AR1XXX-LINUX-UART-V102/mchpar1xxx.ko 

make[1]: Leaving directory `/usr/src/linux-headers-2.6.35-24-generic-

pae' 

gcc -o inputactivate inputactivate.c 

gcc -o inputverify inputverify.c 

 

Command: 

sh ./install-module.sh 

 

Example output: 

Installing kernel module 

`mchpar1xxx.ko' -> `/lib/modules/2.6.35-24-generic-

pae/kernel/drivers/input/touchscreen/mchpar1xxx.ko' 

 

A kernel touch module will have been created in the same directory it was built with a “.ko” file extension 

after a successful build using the “make” command.  The “./install-module.sh” script’s responsibility is to 

install the compiled touch module by copying it to a location where it may be successfully loaded. 
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It is often necessary (but not always necessary since a kernel module may automatically load from 

activation) to load the kernel module before activating the processing of touch packets.  To load the kernel 

module, enter the command “modprobe mchpar1xxx”. 

 

Command: 

modprobe mchpar1xxx 

 

Example output: 

No output expected 

 

To verify the kernel module has successfully loaded, run the command “lsmod | grep mchp” and a single 

line of text should appear indicating the loaded module. 

 

Command: 

lsmod | grep mchpar1xxx 

 

Example output: 

Mchpar1xxx 2321 0 

 

Please note that after this step the cursor is not yet expected to move.  Even though the kernel touch module 

has been loaded, we will still need to send the kernel module bytes before we may have coordinates 

returned using the device path.   

3.1.2 Setting up a udev rule 

 

For every input device that is activated (enumerated), a kernel evdev path will be created in the order of 

enumeration somewhere under the path “/dev/input” that will send touch state information in evdev format 

to any application or touch library that reads this location (for example, “/dev/input/event5”).    Sometimes 

after a reboot or a hot plug, this evdev path will change.  This change can cause our setting to not be 

applied to the intended input device.  Fortunately, Linux provides a mechanism in the form of udev rules to 

consistently map this location.  To install the udev rule for the controller, copy the file “10-

ar1xxxuart.rules” to the “/etc/udev/rules.d” directory. The following line is an example of how to do this. 

 

Command: 

cp 10-ar1xxxuart.rules /etc/udev/rules.d 

 

Example output: 

No output expected 

 

 

If a recent kernel with “inotify” support is used, udev will automatically detect this new file and apply this 

new rule file.  If this is not the case, reboot to computer to apply the rule file. 

 

Now all controllers that are activated with the name “Microchip AR1XXX Serial TouchScreen” will be 

mapped at location “/dev/input/by-id/Microchip_AR1XXX_UART_Touchscreen_event”.  Verification of 
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this udev rule being applied is described under “Activating UART Driver and determining event ID” in the 

upcoming documentation. 

  

3.1.3 Finding the touch controller’s device path 

 

A controller’s device path is the path in which data may be read from the touch controller.  In order to 

finish configuring a touch controller, this path needs to be discovered if it is not known already (Usually, 

the path is either "/dev/ttyS0" or "/dev/ttyS1").  To help automatically discover the controller, the 

“inputverify” tool that is included with the driver may be used to discover the path of the controller.  To 

detect the device path, run the command “./inputverify –f –p AR1XXX” from the installation directory.  

With the exception of the EVDEV protocol, during the execution of this command the touch screen will 

need to be touched (to better clarify, touch screen, hold the touch, press enter, and release touch after 

command completes). 

 

Command: 

./inputverify –f –p AR1XXX 

 

Example output: 

Microchip Touchscreen Controller Utility V1.00 

 

Command-line options selected: 

Find mode enabled. 

Protocol set to AR1XXX 

Found controller at device path: /dev/ttyS0 

3.1.4 Activating UART Driver and determining event ID 

 

1. If a udev rule was installed, this step may be skipped.  Otherwise, before activating the driver, if udev 

rule has not been installed, first look at the list of existing event IDs.  This can be done by running the 

command “ls /dev/input” 

 

2. If the udev is Using the device path of the controller, run the "inputactivate" command with root access 

as shown below: 

 

 

Command: 

./inputactivate –ar1xxx /dev/ttyS0 & 

 

Example output: 

No output expected 

 

 

After touching the touch screen, the cursor will now move if running this command under the Desktop 

(X11) Linux environment. 
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3. If a udev rule was installed, verify the udev mapped evdev path appeared by running the command “ls 

/dev/input/by-id/Microchip_AR1XXX_UART_Touchscreen_event”. 

 

Command: 

ls /dev/input/by-id/Microchip_AR1XXX_UART_Touchscreen_event 

 

Example output: 

/dev/input/by-id/Microchip_AR1XXX_UART_Touchscreen_event 

 

4.  If a udev rule was installed, this step may be skipped.  Otherwise, at this point the Linux system will 

now be outputting Linux formatted touch packets (evdev format). Enter the command “ls /dev/input” 

and the event id that was not previously seen in the directory listing will be the new event ID.   

Usually, the highest event ID is the correct ID. 

 

The full series of steps to determine event id without a udev rule installed is shown below. 

 

Command:  

ls /dev/input 

 

Example output: 

by-id event0 event2 event4 js0 mice mouse1 

by-path event1 event3 event5 js1 mouse0 mouse2 

 

Command: 

./inputactivate –ar1xxx /dev/ttyS0 & 

 

Example output: 

[1] 2252 

 

Command: 

ls /dev/input 

 

Example output: 

by-id event0 event2 event4 event6 js1 mouse0 mouse2 

by-path event1 event3 js0 mice mouse1 mouse3 

 

 

In the above example, the new event id is “event6”. 

 

3.1.5 Automatic activation after a reboot 

 

To have the driver automatically activate after a reboot, a startup script can be created to automatically 

activate the controller for every startup.  Usually, this file is created in the directory “/etc/init.d”.  Please 

create the file “touchstart” with the following contents with the bolded path change to the path on the target 

system. 
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modprobe mchpar1xxx 

killall -9 inputactivate 

/usr/local/bin/inputactivate –ar1xxx /dev/ttyS0 & 

To cause the script to automatically run during boot up, we need to run the following commands: 

 

Command: 

runlevel 

 

Example output: 

N 2 

 

Command (the following command may need to be modified slightly 

depending on target distribution): 

ln –s /etc/init.d/touchstart /etc/rc2.d/S01touchstart 

 

Command: 

chmod 755 /etc/init.d/touchstart 

 

Example output: 

No output expected 

 

3.1.6 Setting up automatic installation on kernel upgrade / update using DKMS 

 

Very often an updated kernel is installed on Linux system to address security fixes and add enhancements.  

All of the Linux kernel module drivers must be rebuilt at this point in order to work.  In other words, if 

Linux modules were compiled before the update, it would cease to work after the upgrade (by design).  In 

order to address this problem a mechanism call dynamic kernel module support (DKMS) can be used to 

automatically compile and install all kernel modules that are not already part of the Linux kernel tree. 

 

A short summary of example dkms commands is shown below.  In order for any of these commands to 

work correctly, the kernel source files, Makefile and “dkms.conf” files need to be present in the 

“AR1XXX-LINUX-UART-V102” directory. 

 

Registering a kernel source package with DKMS: 

dkms add -m AR1XXX-LINUX-UART -v V102 

 

Building a kernel source package registered with DKMS: 

dkms build -m AR1XXX-LINUX-UART -v V102 

 

Installing a kernel source package registered with DKMS: 

dkms install -m AR1XXX-LINUX-UART -v V102 

 

Uninstalling a kernel source package registered with DKMS: 

dkms uninstall -m AR1XXX-LINUX-UART -v V102 
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Un-registering a kernel source package with DKMS: 

dkms remove -m AR1XXX-LINUX-UART -v V102 --all 

 

4.0 Common Open Source Calibration Methods 

 

Up to this point, we have been setting things up such that the system reads the controller data and decodes 

this into controller’s raw coordinates.   Raw coordinates are coordinates that the controller calculates and 

communicates as a result of a touch.  These raw coordinates will be accurate according to its electrical 

connections from the touch screen to the controller.  However, to make these raw coordinates match up 

with the touched area of the display, a touch calibration will often be necessary. 

 

For embedded machines, the basic usage of the “tslib” touch screen library will be described.  For desktop 

machines, the evdev X11 module (used by xorg.conf modification) and evdev dynamic calibration methods 

will be described. 

4.1 Tslib (recommended reading for embedded Linux) 

4.1.1 Setting up Tslib library 

 

The Tslib library is an open source touch library mostly aimed at embedded systems. The Tslib libraries 

come with a calibration application (“ts_calibrate”) and a test application (“ts_test”) that utilize the 

graphics framebuffer.   The framebuffer is a device that abstracts the graphics hardware so that software 

may access graphics capabilities using a common interface across various hardware platforms.  The 

framebuffer interface is very common on embedded devices. 

 

A Tslib installation script, the Tslib version 1.0 source bundle, and patch files are provided to ensure the 

code functions correctly with Microchip touchscreen controllers. Before running this startup script, please 

ensure the “autotools” packages are installed such as “autoconf” and “automake” that this script depends 

upon.  An example usage of this script is shown below. 

 

Command: 

sh ./install-tslib.sh 

 

Example output: 

Extracting files 

tslib-1.0/ 

tslib-1.0/m4/ 

tslib-1.0/m4/external/ 

tslib-1.0/m4/external/PLACEHOLDER 

tslib-1.0/m4/internal/ 

tslib-1.0/m4/internal/visibility.m4 

tslib-1.0/plugins/ 

. 

. 

. 

make[2]: Leaving directory `/home/steve/Desktop/AR1XXX-LINUX-UART-

V102/tslib-1.0' 
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make[1]: Leaving directory `/home/steve/Desktop/AR1XXX-LINUX-UART-

V102/tslib-1.0' 

Installation complete. 

 

Next environmental variables will need to be setup in order to 

run 'ts_calibrate' and 'ts_test' tslib utilities. 

 

For example if evdev path is at /dev/input/event5,the minimum 

environmental variables will need to be set by using the following 

commands. 

 

export TSLIB_TSDEVICE=/dev/input/event5 

export TSLIB_PLUGINDIR=/usr/local/lib/ts 

 

 

 

 

 

If everything is setup correctly, the “ts_calibrate” application can be used to calibrate the display and the 

“ts_test” application can be used to test the calibration.  However, before we can use these utilities, we need 

to setup a couple environmental variables.  At a minimum, we need to set “TSLIB_TSDEVICE” and 

“TSLIB_PLUGINDIR” for the utilities to work correctly with our Tslib configuration. 

 

export TSLIB_TSDEVICE=/dev/input/by-id/Microchip_AR1XXX_UART_Touchscreen_event  

export TSLIB_PLUGINDIR=/usr/local/lib/ts 

 

Other environmental values that can be set include the following: 

 

export TSLIB_FBDEVICE=/dev/fb0 

export TSLIB_CONSOLEDEVICE=none 

export TSLIB_CALIBFILE=/etc/pointercal 

export TSLIB_CONFFILE=/etc/ts.conf 
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After setting the environmental values, we now can run “ts_calibrate”. The images below shows what can 

be expected to see after running this calibration. 

 

 
 

 

 

To test the calibration, run the “ts_test” command.  The image below demonstrates the test screen. 
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4.2 Configuring X-Windows (recommended reading for desktop Linux) 

 

X11(also referred to as X-Windows or Xorg) is a protocol that is used for graphical applications and input 

most often used on desktop Linux systems.  Windows managers on Linux use X11 to define a general 

interface to interacting with graphical application. In this section we will describe how to configure our 

input devices with X11 so that the resulting coordinate events returned by X11 are in a calibrated form. 

4.2.1 Acquiring minimum/maximum values of X/Y axes 

 

The “inputverify” tool may be used to monitor input events from a device path. 

 

We will want to use the “inputverify” tool with the activated controller’s evdev path to get the minimum 

and maximum values for the X and Y axes of the touch screen so we will later be able to calibrate the touch 

sensor. 

 

inputverify –d /dev/input/by-id/Microchip_AR1XXX_UART_Touchscreen_event 

–p EVDEV 

 

 

Test if X and Y axes are swapped 

 

Touch along the left edge of the touch screen and look at the second column of numbers which represents 

the y-axis.  The values in these middle column should have the biggest change in value and the left column 

should be mostly near the same value.  If this is not the case, that means the touch screen is wired to the 

controller such that the x and y axes are swapped.   

 

To test for range with axes swapped, please follow these steps: 

 

Touch the middle of the left edge of the touchscreen and write down the Y position as the min_y value. 

Touch the middle of the right edge of the touchscreen and write down the Y position as the max_y value. 

Touch the middle of the top edge of the touchscreen and write down the X position of the min_x value. 

Touch the middle of the bottom edge of the touchscreen and write down the X position of the max_x value. 

 

To test for range without axes swapped, please follow these steps: 

 

Touch the middle of the left edge of the touchscreen and write down the X position as the min_x value. 

Touch the middle of the right edge of the touchscreen and write down the X position as the max_x value. 

Touch the middle of the top edge of the touchscreen and write down the Y position of the min_y value. 

Touch the middle of the bottom edge of the touchscreen and write down the Y position of the max_y value. 

 

We will use these values for our calibration using either the evdev X11 module or evdev dynamic 

calibration.  If the minimum x value is greater than the maximum x value and/or the minimum y value is 

greater than the maximum y value, this is not uncommon and evdev will use this information to determine 

which axes are flipped. 

 

4.2.2 Evdev X11 dynamic calibration 

 

Newer version of Xorg includes the “Xinput” protocol which allows for dynamic calibration.  Dynamic 

calibration enables a touch screen calibration to be tested without first editing a configuration file. 
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The minimum requirements for evdev dynamic calibration are as follows: 

 

 Xserver version 1.5 and above 

 evdev version 2.3.0 or higher 

 

To perform a dynamic calibration manually, please follow these steps.   

 

1.  Find the ID of the touch device to configure by running the command “xinput list”. 

 

2. Set the raw mode of the device every time before a dynamic calibration is performed (otherwise 

we may be calibrating an already calibrated touch device) using the following command: 

 

xinput set-int-prop <id> “Evdev Axis Calibration” 32 0 4095 0 4095 

xinput set-int-prop <id> “Evdev Axes Swap” 8 0 

 

Example output: 

No output expected 

 

3. To set the dynamic calibration values, run the following command using the value for the previous 

step. 

 

xinput set-int-prop <id> “Evdev Axis Calibration” 32 min_x max_x min_y 

max_y 

 

4. If the X and Y axes were determined to be swapped, we will need to run this additional command. 

 

xinput set-int-prop <id> “Evdev Axes Swap” 8 1 

 

5. To verify the settings have been set correctly, touch the touch screen and the mouse cursor should 

move to the touched area. 

 

4.2.2.1 Making dynamic calibration settings permanent 

 

1. Create a “99-calibration.conf” file in the home directory with the following contents 

 

Section "InputClass" 

 Identifier "calibration" 

 MatchProduct "Microchip AR1XXX Serial TouchScreen" 

 Option "Calibration" "min_x max_x min_y max_y" 

EndSection 

 

2. If the X and Y axes were determined to be swapped, we will alter the calibration option line 

shown above. 
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 Option “SwapAxes” “1” 

 

 

3. Copy this file to the “xorg.conf.d” directory. 

 

Command: 

find / -name “xorg.conf.d” 

 

Example output: 

/usr/share/X11/xorg.conf.d 

 

Command using above example: 

cp 99-calibration.conf /usr/share/X11/xorg.conf.d 

 

Example output: 

No output expected 

 

4. Reboot computer. 

 

 

4.2.3 X11 module files 

 

X11 module files can be used to configure how various devices interface with the graphical environment 

and the driver the device is to be associated with.  The file is that usually responsible (if a file is present) is 

the file “/etc/X11/xorg.conf”.   We will use this file to configure input devices to send mouse events such 

that the cursor is calibrated to the touch screen.  Before setting up the system using an X11, please verify 

that the steps detailed in section 3.1.5 has been completed so that a usable evdev path is available after a 

reboot. 

4.2.4 Create missing “xorg.conf” file 

 

Most devices on X11 are automatically used and configured.  For this reason, the configuration file 

“/etc/X11/xorg.conf” is often missing by default.  In the case of configuring touch  

calibration, we will need to generate a configuration file so we may set the calibration setting appropriately. 

 

If a “xorg.conf” file does not exist, one can be created using the command “X -configure” with root access 

without xorg running.  To apply the detected settings, run the command “cp /root/xorg.conf.new 

/etc/X11/xorg.conf”.  It is recommended to test these detected settings before proceeding. 

 

In our example distribution Ubuntu 10.10, we create this missing “xorg.conf” file using the following steps.  

 

1. Reboot the system to get to the grub menu.   

2. If the grub menu does not appear by default during a boot, hold the left shift button shortly after 

reboot and the grub menu will appear. 

3. Selected the appropriate menu item and press the “e” key (usually the default selection is correct) 
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4. Move the cursor down to the line starting with the word “linux” and add the parameter “single” to 

the end of the line.   

5. Boot using this modified grub entry. 

6. Enter the command “X -configure” and then copy the generated “xorg.conf.new” to the “/etc/X11” 

directory with the file name “xorg.conf”. 

7. Reboot 

 

The following demonstrates these commands: 

 

Command: 

X –configure 

 

Example output: 

X.Org X Server 1.9.0 

Release Date: 2010-08-20 

X Protocol Version 11, Revision 0 

Build Operating System: Linux 2.6.24-28-server i686 Ubuntu 

Current Operating System: Linux microchip-SK21V10 2.6.35-25-generic 

#44-Ubuntu SMP Fri Jan 21 17:40:48 UTC 2011 i686 

Kernel command line: BOOT_IMAGE=/boot/vmlinuz-2.6.35-25-generic 

root=UUID=b738431a-45cd-4161-bd4e-97f1476768ba ro quiet splash single 

Build Date: 09 January 2011  12:14:58PM 

xorg-server 2:1.9.0-0ubuntu7.3 (For technical support please see 

http://www.ubuntu.com/support)  

Current version of pixman: 0.18.4 

 Before reporting problems, check http://wiki.x.org 

 to make sure that you have the latest version. 

Markers: (--) probed, (**) from config file, (==) default setting, 

 (++) from command line, (!!) notice, (II) informational, 

 (WW) warning, (EE) error, (NI) not implemented, (??) unknown. 

 

Command: 

cp xorg.conf.new /etc/X11/xorg.conf 

 

Example output: 

No output expected 

 

 

 

 

4.2.5 Evdev X11 module 

 

To using the evdev X11 module, please follow these steps: 

 

5. Edit the “/etc/X11/xorg.conf” file such that it includes the following lines at the end of the file.  

 

http://wiki.x.org/
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Section "InputDevice" 

 Identifier "evdev” 

 Driver “evdev” 

 Option “Calibration” “min_x max_x min_y max_y” 

 Option "Device" "/dev/input/by-id/Microchip_AR1XXX_UART_Touchscreen_event” 

EndSection 

 

6. Next, edit the same file so that it includes the following text below after the line: Section 

“ServerLayout” 

 

 InputDevice “evdev” 

 

 

7. To calibrate the touchscreen, replace the “min_x”, “min_y”, “max_x”, “max_y”, with the values 

discovered in the “Acquiring minimum/maximum values of X/Y axes” section above. 

 

8. If the X and Y axes were determined to be swapped, we will after the calibration option line 

shown above. 

 

 Option “SwapAxes” “1” 

 

9. Reboot computer. 

 

The new touch calibration will now be applied and the cursor will move to the touched region of the touch 

screen. 
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5.0 Uninstallation of the driver 

 

To uninstall driver, run this uninstall script with root access from the installation directory using the 

command “sh ./uninstall.sh”.   

 

Command: 

sh ./uninstall.sh 

 

Example output: 

Deactivating Module 

Unloading Module 

Removing Utilities 

removed `/usr/local/bin/inputactivate' 

removed `/usr/local/bin/inputverify' 

Removing udev rule 

removed `/etc/udev/rules.d/10-ar1xxxuart.rules' 

Removing DKMS components 

. 

. 

. 

Uninstall Complete. 

 

6.0 Troubleshooting 

 

6.1 “inputverify” utility freezes while searching for UART device path 

 

The find mechanism for UART path makes the assumption that the hardware timeouts are supported on the 

target hardware (which is usually the case).  However, if the hardware timeout cannot be set, the utility may 

hang while looking for the attached port.  If this is the case, please check for the path by manually testing 

each logical path the controller may be located at such “/dev/ttyS0”, “/dev/ttyS1”, “/dev/ttyS2” and so on 

by using a command similar to the following “./inputverify –d /dev/ttyS0 –p AR1XXX”. 

6.2 Error opening “fbdevice” using Tslib utilities on desktop Linux 

 

While Tslib is mostly geared towards embedded uses, it can also be used on the desktop as well.  

Sometimes though, when running “ts_calibrate” or “ts_test” utilizes an error regarding opening “fbdevice”, 

is displayed.  This error can usually be corrected by adding an additional kernel mode parameter “vga=xxx” 

(see table below for value of xxx) by editing the kernel parameters within the grub menu. 

 

1. Reboot the system to get to the grub menu.   

2. If the grub menu does not appear by default during a boot, hold the left shift button shortly after 

reboot and the grub menu will appear. 

3. Selected the appropriate menu item and press the “e” key (usually the default selection is correct) 

4. Move the cursor down to the line starting with the word “linux” and add a parameter such as 

“vga=771” to the end of the line to setup framebuffer graphics for 800x600 display resolution.   
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5. To avoid any display drive conflicts,  it may be necessary to run the tslib utilities without Xorg 

running. 

  

By adding this parameter, this enables the use of the kernel framebuffer interface so the tslib utilities may 

display graphics correctly. To use a resolution other than 800x600, please refer to table below which 

discusses a subset of the other available framebuffer display resolutions. 

 

Depth 800x600 1024x768 1280x1024 

8 bit vga=771 vga=773 vga=775 

16 bit vga=788 vga=791 vga=794 

24 bit vga=789 vga=792 vga=795 

 

 

 


