Leaderboard Apex GMS

Density By Design

Military and aerospace requirements demand greater strength, speed, and capabilities in smaller form factors.

Courtney Howard, Executive Editor, M&AE

Originally Published in the March Issue of MILITARY & AEROSPACE ELECTRONICS

The advantages of SFF embedded computers are predictable: size, weight, and power (SWaP); they also cost less than bus-and-board-type plug-in modules, says Chris Ciufo, chief technology officer at General Micro Systems (GMS) in Rancho Cucamonga, Calif.

"An SFF system has the advantage of being completely self-contained and built using inherently low-cost, commercial off-the-shelf (COTS) technology," Ciufo says, "and it’s highly optimized for solving a particular system-level problem while meeting or exceeding tough environmentals." For example, the company’s SFF, conduction-cooled, Windows 10 Pro system can drive three 4K-resolution (3840 × 2160) UHD video displays and includes MIL-STD-1553 plus multiple Ethernet local area network (LAN) ports – yet, it uses roughly 60 watts of power, he says. "The box is about the size of a half-carton of eggs, but is so robust you could park a truck on top of it without any damage to the box. It’s hard to beat that kind of superdense functionality."

Blackhawk

"SFFs are in great demand by military applications that don’t have a lot of space," Ciufo continues, "particularly fighter aircraft and UAV/UAS platforms. SFFs are obviously small and can be tucked into all kinds of available spaces in airframes, vehicles, and other platforms." If you can cable up to it, you can add new functionality, he says.

The small size and purpose-built functionality of a SFF system resonates well with airborne platforms, Ciufo says, estimating that GMS’s biggest growth market is designing server-based SFFs into airborne systems. "These are the kind of applications that demand server-class performance with cloud-like connectivity – via satellite communications (SATCOM) or local database storage – but absolutely cannot afford the size and power you get with a rack-mount server."

Space-based applications are a growth area ideally suited for SFFs but aren’t particularly high-volume, Ciufo says. "In space, the SFF is highly customized to fit the power budget of a solar-powered platform, and the size and weight constraints needed for spacecraft." Nothing excess is added in a space-based SFF, he adds.

Read the full article here.

 

March 1, 2018

By Courtney E. Howard
Executive Editor, M&AE

Aerospace & Defense Technology